Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 133
1.
Mol Genet Metab ; 142(2): 108489, 2024 May 03.
Article En | MEDLINE | ID: mdl-38718669

BACKGROUND: Canavan disease is a devastating neurometabolic disorder caused by accumulation of N acetylaspartate in brain and body fluids due to genetic defects in the aspartoacylase gene (ASPA). New gene therapies are on the horizon but will require early presymptomatic diagnosis to be fully effective. METHODS: We therefore developed a fast and highly sensitive liquid chromatography mass spectrometry (LC-MS/MS)-based method for quantification of N-acetylaspartate in dried blood spots and established reference ranges for neonates and older controls. With this test, we investigated 45 samples of 25 Canavan patients including 8 with a neonatal sample. RESULTS: Measuring N-acetylaspartate concentration in dried blood with this novel test, all Canavan patients (with variable severity) were well separated from the control group (median; range: 5.7; 1.6-13.6 µmol/L [n = 45] vs 0.44; 0.24-0.99 µmol/L [n = 59] (p < 0.05)). There was also no overlap when comparing neonatal samples of Canavan patients (7.3; 5.1-9.9 µmol/L [n = 8]) and neonatal controls (0.93; 0.4-1.8 µmol/L [n = 784]) (p < 0.05). CONCLUSIONS: We have developed a new LC-MS/MS-based screening test for early postnatal diagnosis of Canavan disease that should be further evaluated in a population-based study once a promising treatment becomes available. The method meets the general requirements of newborn screening and should be appropriate for multiplexing with other screening approaches that combine chromatographic and mass spectrometry techniques.

2.
Ann Clin Transl Neurol ; 11(4): 883-898, 2024 Apr.
Article En | MEDLINE | ID: mdl-38263760

OBJECTIVE: This study aims to elucidate the long-term benefit of newborn screening (NBS) for individuals with long-chain 3-hydroxy-acyl-CoA dehydrogenase (LCHAD) and mitochondrial trifunctional protein (MTP) deficiency, inherited metabolic diseases included in NBS programs worldwide. METHODS: German national multicenter study of individuals with confirmed LCHAD/MTP deficiency identified by NBS between 1999 and 2020 or selective metabolic screening. Analyses focused on NBS results, confirmatory diagnostics, and long-term clinical outcomes. RESULTS: Sixty-seven individuals with LCHAD/MTP deficiency were included in the study, thereof 54 identified by NBS. All screened individuals with LCHAD deficiency survived, but four with MTP deficiency (14.8%) died during the study period. Despite NBS and early treatment neonatal decompensations (28%), symptomatic disease course (94%), later metabolic decompensations (80%), cardiomyopathy (28%), myopathy (82%), hepatopathy (32%), retinopathy (17%), and/or neuropathy (22%) occurred. Hospitalization rates were high (up to a mean of 2.4 times/year). Disease courses in screened individuals with LCHAD and MTP deficiency were similar except for neuropathy, occurring earlier in individuals with MTP deficiency (median 3.9 vs. 11.4 years; p = 0.0447). Achievement of dietary goals decreased with age, from 75% in the first year of life to 12% at age 10, and consensus group recommendations on dietary management were often not achieved. INTERPRETATION: While NBS and early treatment result in improved (neonatal) survival, they cannot reliably prevent long-term morbidity in screened individuals with LCHAD/MTP deficiency, highlighting the urgent need of better therapeutic strategies and the development of disease course-altering treatment.


Cardiomyopathies , Lipid Metabolism, Inborn Errors , Mitochondrial Myopathies , Mitochondrial Trifunctional Protein , Nervous System Diseases , Rhabdomyolysis , Humans , Infant, Newborn , Fatty Acids/metabolism , Lipid Metabolism, Inborn Errors/diagnosis , Lipid Metabolism, Inborn Errors/therapy , Lipid Metabolism, Inborn Errors/metabolism , Long-Chain-3-Hydroxyacyl-CoA Dehydrogenase/metabolism , Mitochondrial Trifunctional Protein/metabolism , Mitochondrial Trifunctional Protein/deficiency , Infant , Child, Preschool , Child
4.
Mol Genet Metab ; 140(3): 107675, 2023 11.
Article En | MEDLINE | ID: mdl-37572574

Recessive variants in NDUFAF3 are a known cause of complex I (CI)-related mitochondrial disorders (MDs). The seven patients reported to date exhibited severe neurologic symptoms and lactic acidosis, followed by a fatal course and death during infancy in most cases. We present a 10-year-old patient with a neurodevelopmental disorder, progressive exercise intolerance, dystonia, basal ganglia abnormalities, and elevated lactate concentration in blood. Trio-exome sequencing revealed compound-heterozygosity for a pathogenic splice-site and a likely pathogenic missense variant in NDUFAF3. Spectrophotometric analysis of fibroblast-derived mitochondria demonstrated a relatively mild reduction of CI activity. Complexome analyses revealed severely reduced NDUFAF3 as well as CI in patient fibroblasts. Accumulation of early sub-assemblies of the membrane arm of CI associated with mitochondrial complex I intermediate assembly (MCIA) complex was observed. The most striking additional findings were both the unusual occurrence of free monomeric CI holding MCIA and other assembly factors. Here we discuss our patient in context of genotype, phenotype and metabolite data from previously reported NDUFAF3 cases. With the atypical presentation of our patient, we provide further insight into the phenotypic spectrum of NDUFAF3-related MDs. Complexome analysis in our patient confirms the previously defined role of NDUFAF3 within CI biogenesis, yet adds new aspects regarding the correct timing of both the association of soluble and membrane arm modules and CI-maturation as well as respiratory supercomplex formation.


Acidosis, Lactic , Mitochondrial Diseases , Humans , Child , Mitochondrial Diseases/genetics , Mitochondria/genetics , Mitochondria/metabolism , Exome Sequencing , Acidosis, Lactic/genetics , Phenotype , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism
5.
J Inherit Metab Dis ; 46(6): 1063-1077, 2023 11.
Article En | MEDLINE | ID: mdl-37429829

Newborn screening (NBS) allows early identification of individuals with rare disease, such as isovaleric aciduria (IVA). Reliable early prediction of disease severity of positively screened individuals with IVA is needed to guide therapeutic decision, prevent life-threatening neonatal disease manifestation in classic IVA and over-medicalization in attenuated IVA that may remain asymptomatic. We analyzed 84 individuals (median age at last study visit 8.5 years) with confirmed IVA identified by NBS between 1998 and 2018 who participated in the national, observational, multicenter study. Screening results, additional metabolic parameters, genotypes, and clinical phenotypic data were included. Individuals with metabolic decompensation showed a higher median isovalerylcarnitine (C5) concentration in the first NBS sample (10.6 vs. 2.7 µmol/L; p < 0.0001) and initial urinary isovalerylglycine concentration (1750 vs. 180 mmol/mol creatinine; p = 0.0003) than those who remained asymptomatic. C5 was in trend inversely correlated with full IQ (R = -0.255; slope = -0.869; p = 0.0870) and was lower for the "attenuated" variants compared to classic genotypes [median (IQR; range): 2.6 µmol/L (2.1-4.0; 0.7-6.4) versus 10.3 µmol/L (7.4-13.1; 4.3-21.7); N = 73]. In-silico prediction scores (M-CAP, MetaSVM, and MetaLR) correlated highly with isovalerylglycine and ratios of C5 to free carnitine and acetylcarnitine, but not sufficiently with clinical endpoints. The results of the first NBS sample and biochemical confirmatory testing are reliable early predictors of the clinical course of IVA, facilitating case definition (attenuated versus classic IVA). Prediction of attenuated IVA is supported by the genotype. On this basis, a reasonable algorithm has been established for neonates with a positive NBS result for IVA, with the aim of providing the necessary treatment immediately, but whenever possible, adjusting the treatment to the individual severity of the disease.


Amino Acid Metabolism, Inborn Errors , Child , Humans , Infant, Newborn , Acetylcarnitine , Amino Acid Metabolism, Inborn Errors/diagnosis , Genotype , Glycine/genetics , Neonatal Screening/methods , Patient Acuity
6.
Mol Genet Metab Rep ; 35: 100977, 2023 Jun.
Article En | MEDLINE | ID: mdl-37275680

We report on liver transplantation in two patients with GSD Ib on treatment with empagliflozin. The use of this SGLT2 inhibitor resulted in a marked decrease of 1,5-anhydroglucitol which has an important role in the development of neutropenia in this condition. As intended, this caused a significant rise of neutrophil numbers. Liver transplantation alone did not produce the desired effect and our observation argues for continuing SGLT2 inhibitor treatment after transplantation.

8.
J Clin Med ; 12(12)2023 Jun 18.
Article En | MEDLINE | ID: mdl-37373807

Mucolipidosis type II (MLII), an ultra-rare lysosomal storage disorder, manifests as a fatal multi-systemic disease. Mental inhibition and progressive neurodegeneration are commonly reported disease manifestations. Nevertheless, longitudinal data on neurocognitive testing and neuroimaging lack in current literature. This study aimed to provide details on central nervous system manifestations in MLII. All MLII patients with at least one standardized developmental assessment performed between 2005 and 2022 were included by retrospective chart review. A multiple mixed linear regression model was applied. Eleven patients with a median age of 34.0 months (range 1.6-159.6) underwent 32 neurocognitive and 28 adaptive behaviour assessments as well as 14 brain magnetic resonance imagings. The scales used were mainly BSID-III (42%) and VABS-II (47%). Neurocognitive testing (per patient: mean 2.9, standard deviation (SD) 2.0) performed over 0-52.1 months (median 12.1) revealed profound impairment with a mean developmental quotient of 36.7% (SD 20.4) at last assessment. The patients showed sustained development; on average, they gained 0.28 age-equivalent score points per month (confidence interval 0.17-0.38). Apart from common (63%) cervical spinal stenosis, neuroimaging revealed unspecific, non-progressive abnormalities (i.e., mild brain atrophy, white matter lesions). In summary, MLII is associated with profound developmental impairment, but not with neurodegeneration and neurocognitive decline.

9.
Brain Commun ; 5(1): fcad017, 2023.
Article En | MEDLINE | ID: mdl-36793789

Superoxide dismutase-1 is a ubiquitously expressed antioxidant enzyme. Mutations in SOD1 can cause amyotrophic lateral sclerosis, probably via a toxic gain-of-function involving protein aggregation and prion-like mechanisms. Recently, homozygosity for loss-of-function mutations in SOD1 has been reported in patients presenting with infantile-onset motor neuron disease. We explored the bodily effects of superoxide dismutase-1 enzymatic deficiency in eight children homozygous for the p.C112Wfs*11 truncating mutation. In addition to physical and imaging examinations, we collected blood, urine and skin fibroblast samples. We used a comprehensive panel of clinically established analyses to assess organ function and analysed oxidative stress markers, antioxidant compounds, and the characteristics of the mutant Superoxide dismutase-1. From around 8 months of age, all patients exhibited progressive signs of both upper and lower motor neuron dysfunction, cerebellar, brain stem, and frontal lobe atrophy and elevated plasma neurofilament concentration indicating ongoing axonal damage. The disease progression seemed to slow down over the following years. The p.C112Wfs*11 gene product is unstable, rapidly degraded and no aggregates were found in fibroblast. Most laboratory tests indicated normal organ integrity and only a few modest deviations were found. The patients displayed anaemia with shortened survival of erythrocytes containing decreased levels of reduced glutathione. A variety of other antioxidants and oxidant damage markers were within normal range. In conclusion, non-neuronal organs in humans show a remarkable tolerance to absence of Superoxide dismutase-1 enzymatic activity. The study highlights the enigmatic specific vulnerability of the motor system to both gain-of-function mutations in SOD1 and loss of the enzyme as in the here depicted infantile superoxide dismutase-1 deficiency syndrome.

10.
JIMD Rep ; 64(1): 114-120, 2023 Jan.
Article En | MEDLINE | ID: mdl-36636590

Newborn screening (NBS) for isovaleric acidemia (IVA) is performed by flow injection tandem mass spectrometry quantifying C5 carnitines (C5). Isovalerylcarnitine, however, is isomeric with pivaloylcarnitine which can be present in blood due to maternal use of pivaloylester-containing antibiotics, available in Germany since late 2016. During a 36-month period (January 19-December 21), all newborns screened in Hamburg with a C5 above cutoff (NeoGram®: 0.50 µmol/L or Neobase®2: 0.45 µmol/L) were included in the study. As a second-tier test, a simple ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed to differentiate the C5 isomers pivaloyl-, 2-methylbutyryl-, isovaleryl-, and valerylcarnitine. Out of 156 772 newborns tested, one turned out to have genetically proven IVA while 99 were false positive (C5: 0.5-8.2 µmol/L) due to the presence of pivaloylcarnitine. These cases have increased year by year and show local clusters. Retrospective analysis of another 39 cases from 287 206 neonates tested at the NBS center in Heidelberg with C5 elevation (0.9-10.6 µmol/L) but clinical and biochemical exclusion of IVA yielded evidence of pivaloylcarnitine in all cases. Inclusion of a second-tier test into NBS significantly reduces the high and increasing false-positive rate of IVA screening. This avoids further diagnostic steps, prevents unnecessary stress and anxiety of parents in a remarkably high number of cases. If Hamburg data of 2021 are extrapolated to all of Germany, one can assume around 800 (1‰) false-positive cases in comparison to an average of two classic IVA cases per year. Unless licensing of pivaloylester-containing drugs for use during pregnancy is reconsidered, a second-tier test for C5 determination is indispensable.

11.
Calcif Tissue Int ; 112(3): 308-319, 2023 Mar.
Article En | MEDLINE | ID: mdl-36414794

Hypophosphatasia (HPP) is an inherited, systemic disorder, caused by loss-of-function variants of the ALPL gene encoding the enzyme tissue non-specific alkaline phosphatase (TNSALP). HPP is characterized by low serum TNSALP concentrations associated with defective bone mineralization and increased fracture risk. Dental manifestations have been reported as the exclusive feature (odontohypophosphatasia) and in combination with skeletal complications. Enzyme replacement therapy (asfotase alfa) has been shown to improve respiratory insufficiency and skeletal complications in HPP patients, while its effects on dental status have been understudied to date. In this study, quantitative backscattered electron imaging (qBEI) and histological analysis were performed on teeth from two patients with infantile HPP before and during asfotase alfa treatment and compared to matched healthy control teeth. qBEI and histological methods revealed varying mineralization patterns in cementum and dentin with lower mineralization in HPP. Furthermore, a significantly higher repair cementum thickness was observed in HPP compared to control teeth. Comparison before and during treatment showed minor improvements in mineralization and histological parameters in the patient when normalized to matched control teeth. HPP induces heterogeneous effects on mineralization and morphology of the dental status. Short treatment with asfotase alfa slightly affects mineralization in cementum and dentin. Despite HPP being a rare disease, its mild form occurs at higher prevalence. This study is of high clinical relevance as it expands our knowledge of HPP and dental involvement. Furthermore, it contributes to the understanding of dental tissue treatment, which has hardly been studied so far.


Calcinosis , Hypophosphatasia , Tooth Demineralization , Humans , Hypophosphatasia/complications , Alkaline Phosphatase/genetics , Calcification, Physiologic , Calcinosis/complications , Tooth Demineralization/complications , Tooth Demineralization/drug therapy
12.
Genet Med ; 25(6): 100314, 2023 06.
Article En | MEDLINE | ID: mdl-36305855

PURPOSE: This study aimed to define the genotypic and phenotypic spectrum of reversible acute liver failure (ALF) of infancy resulting from biallelic pathogenic TRMU variants and determine the role of cysteine supplementation in its treatment. METHODS: Individuals with biallelic (likely) pathogenic variants in TRMU were studied within an international retrospective collection of de-identified patient data. RESULTS: In 62 individuals, including 30 previously unreported cases, we described 47 (likely) pathogenic TRMU variants, of which 17 were novel, and 1 intragenic deletion. Of these 62 individuals, 42 were alive at a median age of 6.8 (0.6-22) years after a median follow-up of 3.6 (0.1-22) years. The most frequent finding, occurring in all but 2 individuals, was liver involvement. ALF occurred only in the first year of life and was reported in 43 of 62 individuals; 11 of whom received liver transplantation. Loss-of-function TRMU variants were associated with poor survival. Supplementation with at least 1 cysteine source, typically N-acetylcysteine, improved survival significantly. Neurodevelopmental delay was observed in 11 individuals and persisted in 4 of the survivors, but we were unable to determine whether this was a primary or a secondary consequence of TRMU deficiency. CONCLUSION: In most patients, TRMU-associated ALF was a transient, reversible disease and cysteine supplementation improved survival.


Liver Failure, Acute , Liver Failure , Adolescent , Child , Child, Preschool , Humans , Infant , Young Adult , Acetylcysteine/therapeutic use , Liver Failure/drug therapy , Liver Failure/genetics , Liver Failure, Acute/drug therapy , Liver Failure, Acute/genetics , Mitochondrial Proteins/genetics , Mutation , Retrospective Studies , tRNA Methyltransferases/genetics
13.
J Inherit Metab Dis ; 46(2): 220-231, 2023 03.
Article En | MEDLINE | ID: mdl-36266255

The SARS-CoV-2 pandemic challenges healthcare systems worldwide. Within inherited metabolic disorders (IMDs) the vulnerable subgroup of intoxication-type IMDs such as organic acidurias (OA) and urea cycle disorders (UCD) show risk for infection-induced morbidity and mortality. This study (observation period February 2020 to December 2021) evaluates impact on medical health care as well as disease course and outcome of SARS-CoV-2 infections in patients with intoxication-type IMDs managed by participants of the European Registry and Network for intoxication type metabolic diseases Consortium (E-IMD). Survey's respondents managing 792 patients (n = 479 pediatric; n = 313 adult) with intoxication-type IMDs (n = 454 OA; n = 338 UCD) in 14 countries reported on 59 (OA: n = 36; UCD: n = 23), SARS-CoV-2 infections (7.4%). Medical services were increasingly requested (95%), mostly alleviated by remote technologies (86%). Problems with medical supply were scarce (5%). Regular follow-up visits were reduced in 41% (range 10%-50%). Most infected individuals (49/59; 83%) showed mild clinical symptoms, while 10 patients (17%; n = 6 OA including four transplanted MMA patients; n = 4 UCD) were hospitalized (metabolic decompensation in 30%). ICU treatment was not reported. Hospitalization rate did not differ for diagnosis or age group (p = 0.778). Survival rate was 100%. Full recovery was reported for 100% in outpatient care and 90% of hospitalized individuals. SARS-CoV-2 impacts health care of individuals with intoxication-type IMDs worldwide. Most infected individuals, however, showed mild symptoms and did not require hospitalization. SARS-CoV-2-induced metabolic decompensations were usually mild without increased risk for ICU treatment. Overall prognosis of infected individuals is very promising and IMD-specific or COVID-19-related complications have not been observed.


COVID-19 , Metabolic Diseases , Urea Cycle Disorders, Inborn , Adult , Humans , Child , SARS-CoV-2 , Pandemics , Urea Cycle Disorders, Inborn/complications
14.
Hum Mol Genet ; 32(6): 917-933, 2023 03 06.
Article En | MEDLINE | ID: mdl-36190515

Maintaining protein lipoylation is vital for cell metabolism. The H-protein encoded by GCSH has a dual role in protein lipoylation required for bioenergetic enzymes including pyruvate dehydrogenase and 2-ketoglutarate dehydrogenase, and in the one-carbon metabolism through its involvement in glycine cleavage enzyme system, intersecting two vital roles for cell survival. Here, we report six patients with biallelic pathogenic variants in GCSH and a broad clinical spectrum ranging from neonatal fatal glycine encephalopathy to an attenuated phenotype of developmental delay, behavioral problems, limited epilepsy and variable movement problems. The mutational spectrum includes one insertion c.293-2_293-1insT, one deletion c.122_(228 + 1_229-1) del, one duplication of exons 4 and 5, one nonsense variant p.Gln76*and four missense p.His57Arg, p.Pro115Leu and p.Thr148Pro and the previously described p.Met1?. Via functional studies in patient's fibroblasts, molecular modeling, expression analysis in GCSH knockdown COS7 cells and yeast, and in vitro protein studies, we demonstrate for the first time that most variants identified in our cohort produced a hypomorphic effect on both mitochondrial activities, protein lipoylation and glycine metabolism, causing combined deficiency, whereas some missense variants affect primarily one function only. The clinical features of the patients reflect the impact of the GCSH changes on any of the two functions analyzed. Our analysis illustrates the complex interplay of functional and clinical impact when pathogenic variants affect a multifunctional protein involved in two metabolic pathways and emphasizes the value of the functional assays to select the treatment and investigate new personalized options.


Hyperglycinemia, Nonketotic , Humans , Hyperglycinemia, Nonketotic/genetics , Hyperglycinemia, Nonketotic/pathology , Proteins/genetics , Mutation , Exons/genetics , Glycine/genetics , Glycine/metabolism
15.
Redox Biol ; 58: 102517, 2022 12.
Article En | MEDLINE | ID: mdl-36306676

Regulation of H2S homeostasis in humans is poorly understood. Therefore, we assessed the importance of individual enzymes in synthesis and catabolism of H2S by studying patients with respective genetic defects. We analyzed sulfur compounds (including bioavailable sulfide) in 37 untreated or insufficiently treated patients with seven ultrarare enzyme deficiencies and compared them to 63 controls. Surprisingly, we observed that patients with severe deficiency in cystathionine ß-synthase (CBS) or cystathionine γ-lyase (CSE) - the enzymes primarily responsible for H2S synthesis - exhibited increased and normal levels of bioavailable sulfide, respectively. However, an approximately 21-fold increase of urinary homolanthionine in CBS deficiency strongly suggests that lacking CBS activity is compensated for by an increase in CSE-dependent H2S synthesis from accumulating homocysteine, which suggests a control of H2S homeostasis in vivo. In deficiency of sulfide:quinone oxidoreductase - the first enzyme in mitochondrial H2S oxidation - we found normal H2S concentrations in a symptomatic patient and his asymptomatic sibling, and elevated levels in an asymptomatic sibling, challenging the requirement for this enzyme in catabolizing H2S under physiological conditions. Patients with ethylmalonic encephalopathy and sulfite oxidase/molybdenum cofactor deficiencies exhibited massive accumulation of thiosulfate and sulfite with formation of large amounts of S-sulfocysteine and S-sulfohomocysteine, increased renal losses of sulfur compounds and concomitant strong reduction in plasma total cysteine. Our results demonstrate the value of a comprehensive assessment of sulfur compounds in severe disorders of homocysteine/cysteine metabolism and provide evidence for redundancy and compensatory mechanisms in the maintenance of H2S homeostasis.


Hydrogen Sulfide , Humans , Hydrogen Sulfide/metabolism , Cysteine , Sulfides/metabolism , Homeostasis , Sulfur , Homocysteine
16.
Nutrients ; 14(17)2022 Aug 31.
Article En | MEDLINE | ID: mdl-36079864

The mitochondrial malate aspartate shuttle system (MAS) maintains the cytosolic NAD+/NADH redox balance, thereby sustaining cytosolic redox-dependent pathways, such as glycolysis and serine biosynthesis. Human disease has been associated with defects in four MAS-proteins (encoded by MDH1, MDH2, GOT2, SLC25A12) sharing a neurological/epileptic phenotype, as well as citrin deficiency (SLC25A13) with a complex hepatopathic-neuropsychiatric phenotype. Ketogenic diets (KD) are high-fat/low-carbohydrate diets, which decrease glycolysis thus bypassing the mentioned defects. The same holds for mitochondrial pyruvate carrier (MPC) 1 deficiency, which also presents neurological deficits. We here describe 40 (18 previously unreported) subjects with MAS-/MPC1-defects (32 neurological phenotypes, eight citrin deficiency), describe and discuss their phenotypes and genotypes (presenting 12 novel variants), and the efficacy of KD. Of 13 MAS/MPC1-individuals with a neurological phenotype treated with KD, 11 experienced benefits-mainly a striking effect against seizures. Two individuals with citrin deficiency deceased before the correct diagnosis was established, presumably due to high-carbohydrate treatment. Six citrin-deficient individuals received a carbohydrate-restricted/fat-enriched diet and showed normalisation of laboratory values/hepatopathy as well as age-adequate thriving. We conclude that patients with MAS-/MPC1-defects are amenable to dietary intervention and that early (genetic) diagnosis is key for initiation of proper treatment and can even be lifesaving.


Citrullinemia , Diet, Ketogenic , Aspartic Acid/metabolism , Carbohydrates , Humans , Malates , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Monocarboxylic Acid Transporters
17.
J Inherit Metab Dis ; 45(6): 1070-1081, 2022 11.
Article En | MEDLINE | ID: mdl-36054426

To prevent maternal phenylketonuria (PKU) syndrome low phenylalanine concentrations (target range, 120-360 µmol/L) during pregnancy are recommended for women with PKU. We evaluated the feasibility and effectiveness of current recommendations and identified factors influencing maternal metabolic control and children's outcome. Retrospective study of first successfully completed pregnancies of 85 women with PKU from 12 German centers using historical data and interviews with the women. Children's outcome was evaluated by standardized IQ tests and parental rating of child behavior. Seventy-four percent (63/85) of women started treatment before conception, 64% (54/85) reached the phenylalanine target range before conception. Pregnancy planning resulted in earlier achievement of the phenylalanine target (18 weeks before conception planned vs. 11 weeks of gestation unplanned, p < 0.001) and lower plasma phenylalanine concentrations during pregnancy, particularly in the first trimester (0-7 weeks of gestation: 247 µmol/L planned vs. 467 µmol/L unplanned, p < 0.0001; 8-12 weeks of gestation: 235 µmol/L planned vs. 414 µmol/L unplanned, p < 0.001). Preconceptual dietary training increased the success rate of achieving the phenylalanine target before conception compared to women without training (19 weeks before conception vs. 9 weeks of gestation, p < 0.001). The majority (93%) of children had normal IQ (mean 103, median age 7.3 years); however, IQ decreased with increasing phenylalanine concentration during pregnancy. Good metabolic control during pregnancy is the prerequisite to prevent maternal PKU syndrome in the offspring. This can be achieved by timely provision of detailed information, preconceptual dietary training, and careful planning of pregnancy.


Phenylketonuria, Maternal , Phenylketonurias , Pregnancy , Child , Female , Humans , Retrospective Studies , Phenylketonuria, Maternal/therapy , Phenylalanine , Diet , Child Behavior , Syndrome , Pregnancy Outcome
18.
J Clin Med ; 11(13)2022 Jun 24.
Article En | MEDLINE | ID: mdl-35806935

Mucolipidosis (ML) type II, intermediate, and III are lysosomal storage disorders with progressive multiorgan manifestations predisposing patients to a high risk of perioperative morbidity. The aims of the study were to systematically assess disease manifestations relevant to anaesthesia as well as anaesthesia-related complications. This retrospective study includes ML patients who underwent anaesthesia in two centres between 2008 and 2022. We reviewed patients' demographics, medical history, disease manifestations, as well as procedure- and outcome-related data. A total of 12 patients (7 MLII, 2 ML intermediate, 3 MLIII) underwent 44 anaesthesia procedures (per patient: median 3, range 1-11). The median age was 3.3 years (range 0.1-19.1). At least one complication occurred in 27.3% of the anaesthesia procedures. The vast majority of complications (94%) occurred in children with MLII and ML intermediate. A predicted difficult airway was found in 100% and 80% of the MLII and ML intermediate patients, respectively. Accordingly, most complications (59%) occurred during the induction of anaesthesia. Altogether, respiratory complications were the most frequent (18%), followed by difficult airway management (14%). The risk for anaesthesia-related complications is alarmingly high in patients with ML, particularly in those with MLII and ML intermediate. Multidisciplinary risk-benefit analysis and thoughtful anaesthesia planning are crucial in these patients.

19.
Ann Neurol ; 92(2): 292-303, 2022 08.
Article En | MEDLINE | ID: mdl-35616651

OBJECTIVE: Glycine encephalopathy, also known as nonketotic hyperglycinemia (NKH), is an inherited neurometabolic disorder with variable clinical course and severity, ranging from infantile epileptic encephalopathy to psychiatric disorders. A precise phenotypic characterization and an evaluation of predictive approaches are needed. METHODS: Longitudinal clinical and biochemical data of 25 individuals with NKH from the patient registry of the International Working Group on Neurotransmitter Related Disorders were studied with in silico analyses, pathogenicity scores, and molecular modeling of GLDC and AMT variants. RESULTS: Symptom onset (p < 0.01) and diagnosis occur earlier in life in severe NKH (p < 0.01). Presenting symptoms affect the age at diagnosis. Psychiatric problems occur predominantly in attenuated NKH. Onset age ≥ 3 months (66% specificity, 100% sensitivity, area under the curve [AUC] = 0.87) and cerebrospinal fluid (CSF)/plasma glycine ratio ≤ 0.09 (57% specificity, 100% sensitivity, AUC = 0.88) are sensitive indicators for attenuated NKH, whereas CSF glycine concentration ≥ 116.5µmol/l (100% specificity, 93% sensitivity, AUC = 0.97) and CSF/plasma glycine ratio ≥ 0.15 (100% specificity, 64% sensitivity, AUC = 0.88) are specific for severe forms. A ratio threshold of 0.128 discriminates the overlapping range. We present 10 new GLDC variants. Two mild variants resulted in attenuated, whereas 2 severe variants or 1 mild and 1 severe variant led to severe phenotype. Based on clinical, biochemical, and genetic parameters, we propose a severity prediction model. INTERPRETATION: This study widens the phenotypic spectrum of attenuated NKH and expands the number of pathogenic variants. The multiparametric approach provides a promising tool to predict disease severity, helping to improve clinical management strategies. ANN NEUROL 2022;92:292-303.


Hyperglycinemia, Nonketotic , Glycine/cerebrospinal fluid , Glycine/genetics , Humans , Hyperglycinemia, Nonketotic/diagnosis , Hyperglycinemia, Nonketotic/genetics , Hyperglycinemia, Nonketotic/pathology , Mutation , Phenotype
20.
Genet Med ; 24(8): 1781-1788, 2022 08.
Article En | MEDLINE | ID: mdl-35503103

PURPOSE: This paper aims to report collective information on safety and efficacy of empagliflozin drug repurposing in individuals with glycogen storage disease type Ib (GSD Ib). METHODS: This is an international retrospective questionnaire study on the safety and efficacy of empagliflozin use for management of neutropenia/neutrophil dysfunction in patients with GSD Ib, conducted among the respective health care providers from 24 countries across the globe. RESULTS: Clinical data from 112 individuals with GSD Ib were evaluated, representing a total of 94 treatment years. The median age at start of empagliflozin treatment was 10.5 years (range = 0-38 years). Empagliflozin showed positive effects on all neutrophil dysfunction-related symptoms, including oral and urogenital mucosal lesions, recurrent infections, skin abscesses, inflammatory bowel disease, and anemia. Before initiating empagliflozin, most patients with GSD Ib were on G-CSF (94/112; 84%). At the time of the survey, 49 of 89 (55%) patients previously treated with G-CSF had completely stopped G-CSF, and another 15 (17%) were able to reduce the dose. The most common adverse event during empagliflozin treatment was hypoglycemia, occurring in 18% of individuals. CONCLUSION: Empagliflozin has a favorable effect on neutropenia/neutrophil dysfunction-related symptoms and safety profile in individuals with GSD Ib.


Glycogen Storage Disease Type I , Neutropenia , Adolescent , Adult , Benzhydryl Compounds , Child , Child, Preschool , Glucosides , Glycogen Storage Disease Type I/drug therapy , Glycogen Storage Disease Type I/pathology , Granulocyte Colony-Stimulating Factor/therapeutic use , Humans , Infant , Infant, Newborn , Neutropenia/drug therapy , Retrospective Studies , Surveys and Questionnaires , Young Adult
...